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Abstract. Periodons have been suggested as a mechanism for modulated structures with Qrc 
near one-third of a reciprocal lattice vector, based on a - x z  + x4 anharmonic potential. 
Molecular dynamic simulation is used to look for periodon-like motion in a crystal in thermal 
agitation. Such motion was never seen, because periodons are very unstable and their phase 
space input presumably occupies a negligible portion of the total available phase space. No 
evidence of a phase transition was found. 

1. Introduction 

Quite a few incommensurate structures have modulations with a wavevector around 
one-third of a reciprocal lattice vector, say a* .  A large class of the A2BY4 materials like 
K2Se04 show this behaviour for example [ 11. 

Bilz proposed a mechanism that specifically gives modulations around 4 a* .  The Bilz 
model has an anharmonic potential -aw2 + /3w4 in a normal shell model. The quartic 
term gives a w3-term in the force which appears in the equations of motion. If w is 
proportional to exp[i(kna - ot)], this third-order term leads to an expression containing 
exp[3i(kna - ut)]. These exact solutions containing the two terms mentioned above are 
called periodons and have the interesting property that w(k)  + 0 ask- $a*. Bilz thought 
this could lead to soft modes and modulated structures with k around $a*. Interaction 
with other modes in the system can shift the soft mode away from exactly $a*. 

Let us look at the Bilz et a1 model [2-61 in more detail in its simplest form. All the 
work in the references was done for one-dimensional systems, but the genralisation to 
three dimensions is straightforward. The system is governed by the following Ham- 
iltonian for a simple cubic model: 

+ i f [ ( u , + I k /  - U , k / l 2  + ( U , k + l /  - U,k1>2 + ( U , k / + l  - U , k / ) 2 ]  

+ h y [ ( u , + l k /  - u , k / I 2  + ( U , k + l /  - u , k / > 2  + ( U , k l + l  - u , k / > 2 1 .  (1) 
In the Hamiltonian U,k/ and U,k/ are envisaged as the values of two scalar variables per 
unit cell of the shell and core respectively and w!kl = U,k/ - U,k!. This Hamiltonian leads 
to 2N coupled non-linear equations of motion with the following periodon solutions: 

W,k/  = A sin(wt - k - r) ulkl = B sin(ot - k r )  + C sin 3(ot-  k - r) ( 2 )  
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with 

2 ( f + f ’ ) ( 3  -COS 3k,a - COS 3k,a - COS 3k,a) 
( 3 )  9(m + M )  w 2 ( k )  = 

Also A ,  B and C are particular functions of k without an arbitrary amplitude factor 
because of the non-linearity of the equations. The soft mode behaviour around 4u* is 
clear from equation ( 3 ) ;  in fact in this model all points (0 or +2n/3a,  0 or + 2 ? ~ / 3 a ,  0 or 
+ 2 ~ / 3 a )  give w ( k )  = 0. 

In the original Bilz model the adiabatic approximation (i.e. m = 0) was used for the 
electron shell, but giving the shell a mass only changes A ,  B and C somewhat without 
altering the singularity at Sa* as is evident from equation 3. Because computer simu- 
lations with a non-zero mass are much easier, we gave the shell a finite mass. 

The problem with these solitary solutions is that they are not superposable and thus 
cannot possibly describe a hot solid. Bilz et a1 [7,8] therefore imagined a motion that is 
in some sense periodon-like ( periodonish) leading to a self-consistent phonon theory 
with a soft periodon mode phase transition. 

2. Looking for periodons 

To see whether such periodonish motion as proposed by Bilz et a1 could in fact occur in 
practice, we tested this hypothesis using molecular dynamics simulations in a micro- 
canonical ensemble. A 16 X 16 X 16 set of atoms on a cubic lattice was used. In order 
to recognise the periodinishness, the scattering function, S(k ,  w ) ,  was calculated. If 
the motion is indeed periodonish (with periodon wavevector k ) ,  one would see two 
characteristic peaks-ne at k and o (as given by equation ( 3 ) )  and another at 3k and 
3 0 .  The height of the peaks will, among other things, depend on how periodonish the 
motion is. The peaks are shown in figure 1 for two typical cases. 

Although about 100 or more scattering functions were calculated for different values 
of the parameters in equation ( l ) ,  no such peaks were ever observed. Two of the 
examples are shown in figure 1. Note that there is absolutely no hint of a peak at the 
expected sites in figure l(a) and although there is a peak at the right place in figure l(b),  
there is no sign of the second accompanying peak necessary to signify periodon motion. 
We looked especially at temperatures such that the energy in the system is a little larger 
than that of one periodon, thinking that these conditions would be most likely to result 
in periodonish motion. 

3. The phase space behaviour of periodons 

The negative results of the scattering function calculations lead one to ask whether it is 
possible to show more convincingly that periodonish motion never occurs in practice. 
Two issues turn out to be of central importance here: the stability of the periodons and 
the behaviour of the paths in phase space around these solutions. 

Let us look at the stability question first. In an analytical approach one puts u = 
up + 6u as usual where up is the pure periodon solution and one linearises the resulting 
equations in 6u and 6 u .  The final result is 2N coupled time-dependent differential 
equations. Although these equations are now linear, they are still very difficult to solve 
and one has to resort to numerical methods. 
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Figure 1. Typical graphs of S(k, w )  as observed in real simulations (full traces) and the 
positions where the periodon peaks would have been if they were present (broken traces). 
In all cases the total energy of the system was chosen a little larger than the periodon energy. 
In (a )  k = (0 .5 ,0 .0 ,0 .0) , f= 0.2, f '  = 0.1 and in (b) and (c) k = (0.375,0.375,0.375),f= 
l S f ' = O . l . I n b o t h c a s e s M =  l .O,m=O.l,a= l .Oandp=  1.0.Togetridoffinite-time 
diffraction effects the function was smoothed out using a Gaussian. 

Define the following 'norm' function: 

where u,k[(t) is the observed value of the core displacement at time t and uP;;'(t) that 
predicted by the periodon solution of wavevector k. The same function can obviously 
be defined for W,kl or ujk[. For pure periodon motion, i.e. u(t) = uperk(t) we have 
P f ( t )  = 0; for u(t) an arbitrary motion bearing no resemblance to periodonish motion, 
P f ( t )  , will oscillate around 1 with the oscillations becoming smaller as the system grows 
bigger. The function &(t)  is thus a measure of the periodonishness of a certain motion 
and can be used to see how quickly and how far the real solutions drift away from the 
exact periodons. Note that if a periodon differing by a phase factor of n/2 is tested using 
P f ( t ) ,  one gets Pj!(t) = 1. Therefore to test an arbitrary function for periodonishness, it 
is necessary to calculate Pj!(t) with two periodon test functions differing by a phase of 
n/2. 
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Using P$( t )  in this manner we have shown that periodons are unstable and, more 
important, that there are no stable orbits in phase space displaying a noticeable amount 
of periodonishness. Figures 2 , 3  and 4 are typical examples of systems that were started 
off with the displacements and velocities of the atoms as one would expect for perfect 
periodon solutions, the only perturbations being those due to the discretisation of the 
differential equations and computer rounding errors. We used double precision and 
Beeman’s method with timesteps roughly 0.01 times a periodon period in our calcu- 
lations. In all cases the variations in the total energy were less than 0.1%. As can be seen 
in figure 3 ,  all traces of periodonishness die away extremely quickly. Graphs like these 
were drawn for a few hundred different sets of parameters and initial conditions and in 
all cases the periodons die away without leaving any trace. We can thus conclude that 
no stable orbits exist near the periodon solutions and that periodon solutions are 
extremely unstable, even on a timescale of one period of a periodon oscillation. 

I 

i I b )  

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  o.oo 
Time (in units of periodon periods) 

Figure 2. Examples of P{(t) with the system started off as a pure periodon. All parameters 
except k are the same as in figure l (u) .  In (a)  k = (0.875,0.0,0.0) and in (b)  k = (0.375,0.0, 
0.0). The time axis is calibrated in terms of the period of the pure periodon. In all cases the 
k-vectors are measured in units of x/u .  
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Figure 3. The same graphs as in figure 2 but over a shorter timescale. 

P,u(t) 1.0 - 

0.5 - ’ 

Time (in units of periodon periods) 

Figure4. Examples of P ; ( f )  with everything the same as in figure 2, except tha t f=  0.8 and 
the k-vectors and (a) and ( b )  are (0.625,0.625,0.625) and (0.25,0.25,0.25) respectively. 
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and /3 = 1 .O. The units on the time axis are the period of periodon (a) in all cases. The dotted 
traces show the kind of ‘dips’ one would observe for a system moving from periodon to 
periodon: they were never seen. 

Time (in units of periodon perioda) 
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Let us now turn to the second issue. It is conceivable that a periodon orbit is a saddle- 
type instability, and hence that some nearby orbits are first attracted to it and then 
repelled. The path leaving a certain periodon orbit may thus get attracted to another 
periodon orbit before it is repelled only to end up at or near yet another periodon 
solution. Does one in this way get periodonish motion even though every single orbit in 
the vicinity of the periodon orbit is unstable? 

It is possible to use the ‘norm’ function P i ( t )  to answer this question. We calculated 
P i ( t )  for 20 different k-vectors simultaneously. If the phase space orbit of the system 
moves from periodonish orbit to periodonish orbit, one should see something like that 
indicated by the full trace in figure 5 .  No such ‘dips’ for any k-vector were ever observed 
showing that once a periodon orbit has been left, the system never returns to it or to 
another periodon orbit or even very near to some periodon orbit. In technical terms one 
can say that the phase space inputs of periodon orbits are of a much lower dimension 
than the rest of phase space. 

Finally, although periodons on the scale of the whole system (our simulation used 
4096 atoms) never occur, it may be that they do occur on a smaller scale of a few atoms. 
The motion of the whole system can perhaps be thought of as approximating different 
periodonish motions over different small regions, each region’s periodonish motion 
corresponding to a different k-vector. To test this idea we looked for periodonishness 
on smaller and smaller scales. In figure 6 results analogous to those in figure 5 are shown, 
but this time for a subsystem consisting of only four atoms. The variations in P i ( t )  are 
now much bigger than previously, but are just what one would expect for ‘random’ 
motion (i.e. motion bearing no resemblance to periodonic motion) on such a small scale. 
The periodic variations observed at certain k in figures 5 and 6 are due to phonon-like 
motion in the system with wphonon(k) roughly of the same order as o ( k )  given by equation 
(3). 

4. Conclusion 

It is of course only possible to look at a finite number of sets of parameters and initial 
conditions using computer simulations. Parameter space is constrained, however, by 
the fact that w ,  A ,  B and C must all be real and the initial conditions by the assumption 
that measurable periodonic effects will occur only in regions where the total energy is 
of the same order as the periodon energies. With these ideas kept in mind, it seems as 
though we covered the set of possible sets of parameters and relevant initial conditions 
reasonably densely in our periodon simulations. Since none of the simulations showed 
any sign of spontaneous development of periodonish motion and since all periodons 
seem to be unstable, we conclude that there is no evidence that periodonish motion on 
any scale will ever occur in nature. A soft periodon phase transition as a mechanism for 
incommensurates around ha* thus seems unlikely. 
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